

8

Supplement IV.E: Constructor Initializers

For Introduction to C++ Programming
By Y. Daniel Liang

Data fields may be initialized in the constructor using an
initializer list in the following syntax:

ClassName(parameterList)
 : datafield1(value1), datafield2(value2) // Initializer list
{
 // Additional statements if needed
}

The initializer list initializes datafield1 with value1 and
datafield2 with value2.

For example,

Circle::Circle()

 : radius(1)

{

}

Circle::Circle()

{

 radius = 1;

}

Same as

(a) (b)

(b) is actually more intuitive than (a) without using an
initializer list. However, using an initializer list is
necessary to initialize object data fields that don’t have a
no-arg constructor.

NOTE
In C++, you can declare an object data field.
For example, name is declared a string object in
the following code:

class Student
{
public:
 Student();

private:
 string name;
};

However, declaring an object data field in a
class is different from declaring a local object
in a function like this:

int main()
{

9

 string name;
};

As an object data field, the object is not
created when it is declared. As an object
declared in a function, the object is created
when it is declared.

NOTE
In C++, data fields (primitive or object type)
cannot be declared with an initial value. For
example, the following code is wrong:

class Student
{
public:
 Student();

private:
 int age = 5; // Cannot initialize a class member
 string name("Peter"); // Cannot initialize a class member
};

The correct declaration is
class Student
{
public:
 Student();

private:
 int age; // Declare a data field of the int type
 string name; // Declare a data field of the string type
};

When an object of the Student class is created,
the constructor automatically invokes the string
class’s no-arg constructor to create an object
for name. However, the primitive data field age
is not automatically initialized. You have to
explicitly initialize it in the constructor. For
example,

class Student
{
public:
 Student()
 {
 age = 5; // Initialize age
 };

10

private:
 int age; // Declare a data field of the int type
 string name; // Declare a data field of the string type
};

If a data field is of an object type, the no-arg
constructor for the object type is automatically
invoked to construct an object for the data field. If
the no-arg constructor does not exist, a compilation
error will occur. For example, the code in Listing 1
has an error, because the time data field (line 24) in
the Action class is of the Time class that does not
have a no-arg constructor.

Listing 1 NoDefaultConstructor1.cpp

class Time
{
public:
 Time(int hour, int minute, int second)
 {
 // Code omitted
 }

private:
 int hour;
 int minute;
 int second;
};

class Action
{
public:
 Action(int hour, int minute, int second)
 {
 time = Time(hour, minute, second);
 }

private:
 Time time;
};

To fix this error, you have to use the constructor initializer list as shown in Listing 2. The
data field time is initialized using an initializer list (line 19).

Listing 2 NoDefaultConstructor2.cpp

class Time
{

11

public:
 Time(int hour, int minute, int second)
 {
 // Code omitted
 }

private:
 int hour;
 int minute;
 int second;
};

class Action
{
public:
 Action(int hour, int minute, int second)
 :time(hour, minute, second)
 {
 }

private:
 Time* time;
};

